Accuracy and clinical utility of the CoaguChek XS portable international normalised ratio monitor in a pilot study of warfarin home-monitoring

Luke Bereznicki, Shane Jackson, Gregory Peterson, Ella Jeffrey, Katherine Marsden and David Jupe

J. Clin. Pathol. published online 2 Jun 2006; doi:10.1136/jcp.2006.037820

Updated information and services can be found at: http://jcp.bmjjournals.com/cgi/content/abstract/jcp.2006.037820v1

These include:

Rapid responses You can respond to this article at: http://jcp.bmjjournals.com/cgi/eletter-submit/jcp.2006.037820v1

Email alerting service Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article

Notes

Online First contains unedited articles in manuscript form that have been peer reviewed and accepted for publication but have not yet appeared in the paper journal (edited, typeset versions may be posted when available prior to final publication). Online First articles are citable and establish publication priority; they are indexed by PubMed from initial publication. Citations to Online First articles must include the digital object identifier (DOIs) and date of initial publication.

To order reprints of this article go to: http://www.bmjjournals.com/cgi/reprintform

To subscribe to Journal of Clinical Pathology go to: http://www.bmjjournals.com/subscriptions/
Accuracy and clinical utility of the CoaguChek XS portable international normalised ratio monitor in a pilot study of warfarin home-monitoring

Luke R. Bereznicki,1 Shane L. Jackson,1 Gregory M. Peterson,1 Ella C. Jeffrey,1 Katherine A. Marsden2 and David M. Jupe2

1Unit for Medication Outcomes Research and Education, School of Pharmacy, University of Tasmania, Australia, and 2Department of Haematology, Royal Hobart Hospital, Tasmania, Australia.

Word count: 1986

Correspondence to: Mr Luke Bereznicki, Unit for Medication Outcomes Research and Education, Tasmanian School of Pharmacy, Private Bag 83 Hobart, Tasmania Australia 7001, Luke.Bereznicki@utas.edu.au
Telephone: (03) 6226 2107
Fax: (03) 6226 7627
Title: Accuracy and clinical utility of the CoaguChek XS portable international normalised ratio monitor in a pilot study of warfarin home-monitoring

Running title: Evaluation of the CoaguChek XS

Luke R. Bereznicki,1 Shane L. Jackson,1 Gregory M. Peterson,1 Ella C. Jeffrey,1 Katherine A. Marsden2 and David M. Jupe2

1Unit for Medication Outcomes Research and Education, School of Pharmacy, University of Tasmania, Australia, and 2Department of Haematology, Royal Hobart Hospital, Tasmania, Australia.
ABSTRACT

Aim: To evaluate the accuracy of the CoaguChek XS international normalised ratio (INR) monitor compared to the laboratory method.

Methods: The accuracy and ease of use of the recently marketed CoaguChek XS portable INR monitor was evaluated in 17 patients involved in a trial of warfarin home-monitoring. INR results from the monitor were compared to the laboratory method. Clinical applicability was measured by discrepant INR values, defined in the literature by expanded and narrow agreement criteria, and by the proportion of INR values differing by more than 15% and 20% from the laboratory method.

Results: Participants provided 59 comparison INR measurements for analysis. The paired results were highly correlated ($r = 0.91$). Expanded and narrow agreement between paired INR values occurred 100% of the time. Only three CoaguChek XS (5.1%) results differed by $>15\%$ compared to the laboratory method; no results differed by more than 20% or were more than 0.5 INR units discrepant.

Conclusions: In the hands of patients the CoaguChek XS demonstrated good correlation with laboratory determination of INR and compared very well with expanded and narrow clinical agreement criteria. Both patients and doctors were highly satisfied with the accuracy and ease of use of the CoaguChek XS.

Keywords: warfarin, international normalised ratio, point-of-care, monitor, accuracy

Take-Home Messages:

- The CoaguChek XS is a new portable coagulometer that has not previously been evaluated in clinical practice.
- The CoaguChek XS is accurate compared to the pathology method.
- Trained patients are able to use the CoaguChek XS in their home to provide a fast and reliable INR result.
- General practitioners and patients were highly satisfied with the accuracy of the device in clinical practice.
- Further evaluation is required to determine the accuracy and precision of the device for INR results outside of standard INR target ranges.
INTRODUCTION
The effectiveness and safety of warfarin is maximised by the maintenance of a target international normalised ratio (INR) range, below which effectiveness is lost, and above which the bleeding risk is unacceptably high.[1] The key objective of point-of-care testing is to provide a fast, accurate result so that appropriate treatment can be commenced or modified, leading to an improved clinical state or economic benefits.[2] A study by the authors found that general practitioners suggested the availability of portable INR monitors would assist with the management of their patients with atrial fibrillation (AF) and perhaps increase their prescribing of warfarin for AF.[3]

The CoaguChek XS (Roche Diagnostics Pty Ltd) was released in October 2005 and, while the results of the master lot calibration have been published,[4] its accuracy has not been assessed in clinical practice to date, particularly through comparison with the laboratory method when used by patients. The objective of this study was to assess the accuracy and clinical utility of the CoaguChek XS monitor, when used by patients to perform weekly self-testing in a pilot study involving communication to and from the general practitioner via the Internet.

MATERIALS AND METHODS
Participants and point-of-care procedure
This evaluation was undertaken as a component of a warfarin home-monitoring pilot study. The pilot study involved 22 patients recruited from Southern Tasmania who were both interested in home-monitoring of anticoagulation and had access to the Internet at their home. Seventeen of these patients received two training sessions to enable patient self-monitoring; the first involved theoretical aspects of anticoagulation therapy and a practical demonstration of the CoaguChek XS, and the second involved revision and practical testing to ensure that the INR monitoring technique was adequate. In the time between the first and second sessions (usually one week), patients completed at least two comparison tests consisting of a home test with the CoaguChek XS and a laboratory INR at the patients’ usual laboratory within four hours of each other. These results were documented by the research team and if the CoaguChek XS INR differed by more than 15% compared to the laboratory INR, the patient was asked to conduct another comparison test. If further tests were more than 15% discrepant, the patient was excluded from the trial.

Once two comparison tests were completed and within 15% of the corresponding laboratory values, the patient entered the pilot study and completed home monitoring once weekly. External quality control was completed every second month via the laboratory method while the patient was enrolled in the study or at the discretion of the patient’s general practitioner. The CoaguChek XS and the pathology INR determinations had to be completed within four hours of each other. Patients enrolled in the pilot study spent up to three months self-monitoring. The pilot study was granted ethical approval by the Tasmanian Human Research Ethics Committee Network, and all patients and doctors provided written consent.

The CoaguChek XS is a portable coagulometer that measures the INR using whole blood obtained by fingerprick. It has been designed specifically for use by non-health professionals. The procedure involves insertion of a test strip into the monitor and application of a drop of blood onto the test strip. The monitor uses an amperometric (electrochemical) method to determine the prothrombin time (PT) after activation of coagulation with thromboplastin on the test strip. The PT is then converted to an INR using the international sensitivity index (ISI), determined for the batch of test strips, found on the control chip. The CoaguChek XS utilises a recombinant human thromboplastin with an ISI value close to 1.0. An INR result is provided within one minute of application of the blood sample to the test strip. An INR result is not displayed if internal quality control conditions are not
The new model offers several improvements over the previous model (CoaguChek S) including improved ease of use, reduced size, the use of a recombinant human thromboplastin with a lower ISI and internal quality control included on the test strip.

Laboratory procedure

Patients used their normal pathology collection centre or general practitioner for venepuncture for comparison INRs, which were sent to a central pathology laboratory. Thus, the CoaguChek XS method was compared to the patient’s usual care. The laboratory method consisted of a phlebotomist nurse drawing a venous sample of blood into 0.138M sodium citrate tubes at a number of pathology collection sites. Centrifuged samples were then analysed in a centralised laboratory with the CA1500 (Sysmex, Kobe, Japan, distributed by Dade Behring in Australia). The thromboplastin used by the laboratory was Thromborel S (Dade International Inc., Miami, FL, USA), which had an ISI of 1.08.

Comparison of techniques

Clinical agreement was measured by discrepant INR values that could have resulted in a different clinical decision. Discrepancy was defined as the percentage of INR results from the CoaguChek XS that was different from the laboratory in the categorisation of the individual patient’s INR value. The INR categories were nominated as 1.0 – 1.9, 2.0 – 3.0, 3.1 – 3.9 and 4.0 – 4.9.

Published criteria for clinical agreement (expanded and narrow) [5] were also assessed. Expanded agreement was achieved if both the CoaguChek XS and the laboratory INR were within, above or below the target range, or the difference between the CoaguChek XS and the laboratory INR when one of the pair was within the targeted range was no more than 0.5 units. Narrow agreement was achieved if both the CoaguChek XS and the laboratory INR were within the patient’s targeted range, both the CoaguChek XS and the laboratory INR were above the targeted range and the values were within 0.8 units, both the CoaguChek XS and the laboratory were below the therapeutic range and the values were within 0.4 units, or the difference between the CoaguChek XS and the laboratory INR was no more than 0.5 units when one of the pair was within the targeted range.

The attitudes of patients who used the CoaguChek XS and their doctors were assessed with a questionnaire featuring visual analogue scales to quantify the answers.

Statistical methods

Accuracy of the CoaguChek XS was determined by comparing the INRs from the monitor and the laboratory on a linear regression analysis. A Bland-Altman plot [6] was utilised to assess the magnitude of disagreement between the monitor and the laboratory INRs. A paired t-test ($P < 0.05$ considered significant) was used to compare the INR values from the CoaguChek XS and laboratory methods. A chi-square test was used to compare categories of INR results obtained by both methods ($P < 0.05$ considered significant).

RESULTS

Seventeen of the initial 22 patients entered and successfully completed training requirements. Five patients did not attend training sessions and did not go on to use the CoaguChek XS. A total of 59 comparison INRs (CoaguChek XS and pathology INR within four hours of each other) were completed either on entry into, or during the trial by the participants (median age 73 years; 12/17 male). Mean INR values for the CoaguChek XS and laboratory, and the status of anticoagulation are shown in Table 1. The CoaguChek XS INR values were significantly correlated with the laboratory INR values ($r = 0.91$, $P = 0.01$; Figure 1). The mean difference in INR (laboratory minus CoaguChek
XS) was 0.07 ± 0.06 ($t = 2.56$, df = 58, $P = 0.01$). The CoaguChek XS was more likely to underestimate the INR, relative to the laboratory, particularly at INR values of less than 3.0. Three of 59 (5.1%) CoaguChek XS tests differed by more than 15% compared to the corresponding laboratory INR. No CoaguChek XS INRs differed from their corresponding laboratory INR by more than 20%. Similarly, no paired INR tests differed by more than 0.5 INR units. The Bland-Altman style plot is shown in Figure 2.

The categorisation of laboratory and CoaguChek XS INRs is shown in Table 2. There was a significant relationship between the two methods ($\chi^2 = 77.0$, df = 6, $P < 0.0001$). Discrepant categorisation of the INR value between the laboratory and CoaguChek XS occurred in 20.3% (12/59) of cases. That is, 79.7% (47/59) of CoaguChek XS values were placed in the same nominal category as the laboratory INR. The majority of discrepant values were falsely low (10/12, 16.9% of all values), while 2/12 (3.4% overall) results over-estimated the pathology INR. Expanded and narrow agreement criteria were met for 100% of paired values.

Patients gave a median score of 7.5/10 when asked how easy they found the CoaguChek XS to use and a median score of 9.0/10 when asked how confident they were with the accuracy of the CoaguChek XS compared to the laboratory method (n = 15). Doctors responded with a median score of 8.2/10 when asked how confident they were with the accuracy of the CoaguChek XS (n = 16).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>CoaguChek XS</th>
<th>Laboratory</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>INR (mean ± SD)</td>
<td>2.31 ± 0.52</td>
<td>2.38 ± 0.46</td>
<td>$P = 0.01$</td>
</tr>
<tr>
<td>Mean difference ± SD</td>
<td>- 0.07 ± 0.06</td>
<td></td>
<td>df = 58 $t = -2.56$</td>
</tr>
<tr>
<td>Percentage within 0.5 INR units</td>
<td>100.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INR value, n (%)</td>
<td>59 (100)</td>
<td>59 (100)</td>
<td></td>
</tr>
<tr>
<td>≤ 1.9</td>
<td>19 (32.2)</td>
<td>10 (16.9)</td>
<td></td>
</tr>
<tr>
<td>Mean INR ± SD</td>
<td>1.79 ± 0.15</td>
<td>1.95 ± 0.19</td>
<td>$P < 0.01$</td>
</tr>
<tr>
<td>Mean difference ± SD</td>
<td>- 0.16 ± 0.08</td>
<td></td>
<td>df = 19 $t = -4.29$</td>
</tr>
<tr>
<td>Percentage within 0.5 INR units</td>
<td>100.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.0 – 3.5</td>
<td>39 (66.0)</td>
<td>48 (81.4)</td>
<td>$P < 0.01$</td>
</tr>
<tr>
<td>Mean INR ± SD</td>
<td>2.38 ± 0.45</td>
<td>2.46 ± 0.39</td>
<td>df = 48 $t = -2.71$</td>
</tr>
<tr>
<td>Mean difference ± SD</td>
<td>- 0.08 ± 0.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Percentage within 0.5 INR units</td>
<td>100.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥ 3.6†</td>
<td>1 (1.7)</td>
<td>1 (1.7)</td>
<td></td>
</tr>
</tbody>
</table>

* Mean differences are between the paired INR values that may or may not have been in the same INR subgroup as the other value.
† Statistical analysis not completed given only 1 value.

Table 1. Comparison of CoaguChek XS and laboratory INR results.
Comparison of INR categories for CoaguChek XS and laboratory results (values given as percentage of laboratory readings).

<table>
<thead>
<tr>
<th>CoaguChek XS</th>
<th>1.0 – 1.9</th>
<th>2.0 – 3.0</th>
<th>3.1 – 3.9</th>
<th>4.0 – 4.9</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laboratory</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0 – 1.9</td>
<td>90 (9)</td>
<td>10 (1)</td>
<td>-</td>
<td>-</td>
<td>100 (10)</td>
</tr>
<tr>
<td>2.0 – 3.0</td>
<td>22 (10)</td>
<td>78 (36)</td>
<td>-</td>
<td>-</td>
<td>100 (46)</td>
</tr>
<tr>
<td>3.1 – 3.9</td>
<td>-</td>
<td>-</td>
<td>67 (2)</td>
<td>33 (1)</td>
<td>100 (3)</td>
</tr>
</tbody>
</table>

Table 2. Comparison of INR categories for CoaguChek XS and laboratory results (values given as percentage of laboratory readings).

DISCUSSION

In a study designed to test the accuracy of CoaguChek XS INR determination compared to laboratory-determined INR, we found the CoaguChek XS to be 100% accurate against expanded and narrow agreement criteria.[5] This compares favourably with data from other previously published studies by the authors where the CoaguChek S model was found to be between 90% and 93% accurate against expanded agreement criteria and between 88% and 90% accurate against narrow agreement criteria, respectively.[7][8] Previous studies by the investigators with the CoaguChek S found that INRs were categorised in the same nominal range on 69% [7] and 85% [9] of occasions. The present study found that 80% of dual INR results were in the same category.

The correlation ($r = 0.91$) between INR results determined by the CoaguChek XS and the laboratory method was similar to that seen in prior studies of earlier models of the CoaguChek ($r = 0.89-0.97$).[7][8][9][10] Regression analysis is only a measure of correlation, not accuracy; a far superior measure is the Bland-Altman analysis.[6] This plot provides a more accurate representation of disagreement for a given mean INR of both methods. Both of these analyses indicated a general underestimation of the INR, which needs to be considered in the interpretation of INR results provided by the CoaguChek XS monitor. This was also demonstrated in prior evaluations of the CoaguChek S device.[7][8][9] One-hundred percent of all dual measurements were within 0.5 INR units in this study, which compares well with figures of 83%,[7] 85%,[9] and 88% [8] reported by the investigators in previous evaluations of the CoaguChek S. As with prior evaluations, the CoaguChek XS was more accurate when within the bounds of the therapeutic INR range. This finding has also been observed with other portable INR monitors.[11][12][13]

The accuracy data for the CoaguChek XS in this study is particularly impressive in light of a number of potential variables. The users of the CoaguChek XS were not researchers or even health professionals, but were patients who were generally elderly and who had received two training sessions regarding the use of the monitor. In addition, a number of pathology collection sites were used. It could be extrapolated from these results that if the CoaguChek XS was implemented in community practice, and if appropriate training was provided to appropriate patients interested in patient self-monitoring, the CoaguChek XS would provide accurate and dependable results.

This accuracy comparison is limited by a small number of comparison results and patients. However, given the diversity of the users of the CoaguChek XS in this study, the monitor performed extremely well and is probably a testament to the ease-of-use of the device. The previous model, CoaguChek S, performed similarly well when used by a variety of users in general practice and community pharmacy.[8][9]

The CoaguChek XS performed admirably in this pilot study. In addition to being highly accurate, participants found it simple to use and both doctors and patients were highly satisfied with its performance. Despite the disadvantage of use by 17 different patients, and blood drawn at different
pathology collection centres, the CoaguChek XS was highly accurate compared to the laboratory method. Thus, the monitor has the potential to become a part of everyday practice for doctors and patients who are willing to self-monitor or manage their warfarin therapy.

Acknowledgements
The authors gratefully acknowledge the assistance of Roche Diagnostics Australia and Neuragenix Pty. Ltd. Luke Bereznicki is the recipient of a National Institute of Clinical Studies Scholarship and Shane Jackson is a National Institute of Clinical Studies Fellow. This project has been supported by the Tasmanian Electronic Commerce Centre Pty. Ltd. under the Business Development Fund, an element of the Launceston Broadband Project, funded by the Commonwealth through the Department of Communications, Information Technology and the Arts.

Conflict of interest: none declared.

The Corresponding Author has the right to grant on behalf of all authors and does grant on behalf of all authors, an exclusive licence (or non exclusive for government employees) on a worldwide basis to the BMJ Publishing Group Ltd and its Licensees to permit this article to be published in Journal of Clinical Pathology editions and any other BMJPGL products to exploit all subsidiary rights, as set out in our licence (http://JCP.bmjournals.com/misc/ifora/licenceform.shtml).

Fig 1. Relationship between CoaguChek XS and laboratory INR values.
Fig 2. Bland-Altman style bias plot for CoaguChek XS and laboratory INR values.
REFERENCES
